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Robust Estimation of Structured Covariance Matrix
for Heavy-Tailed Elliptical Distributions

Ying Sun, Prabhu Babu, and Daniel P. Palomar, Fellow, IEEE

Abstract—This paper considers the problem of robustly estimat-
ing a structured covariance matrix with an elliptical underlying
distribution with a known mean. In applications where the co-
variance matrix naturally possesses a certain structure, taking the
prior structure information into account in the estimation proce-
dure is beneficial to improving the estimation accuracy. We pro-
pose incorporating the prior structure information into Tyler’s
M-estimator and formulating the problem as minimizing the cost
function of Tyler’s estimator under the prior structural constraint.
First, the estimation under a general convex structural constraint
is introduced with an efficient algorithm for finding the estimator
derived based on the majorization-minimization (MM) algorithm
framework. Then, the algorithm is tailored to several special struc-
tures that enjoy a wide range of applications in signal processing
related fields, namely, sum of rank-one matrices, Toeplitz, and
banded Toeplitz structure. In addition, two types of non-convex
structures, i.e., the Kronecker structure and the spiked covari-
ance structure, are also discussed, where it is shown that simple
algorithms can be derived under the guidelines of MM. The al-
gorithms are guaranteed to converge to a stationary point of the
problems. Furthermore, if the constraint set is geodesically convex,
such as the Kronecker structure set, then the algorithm converges
to a global minimum. Numerical results show that the proposed
estimator achieves a smaller estimation error than the benchmark
estimators at a lower computational cost.

Index Terms—Majorization-minimization, robust estimation,
structural constraint, Tyler’s M-estimator.

I. INTRODUCTION

E STIMATING the covariance matrix is a ubiquitous prob-
lem that arises in various fields such as signal process-

ing, wireless communication, bioinformatics, and financial en-
gineering [2]–[4]. It has been noticed that the covariance matrix
in some applications naturally possesses some special structures.
Exploiting the structure information in the estimation process
usually implies a reduction in the number of parameters to be
estimated, and thus is beneficial to improving the estimation
accuracy [5]. Various types of structures have been studied. For
example, the Toeplitz structure with applications in time series
analysis and array signal processing was considered in [5]–[7].
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A sparse graphical model was studied in [8], where sparsity
was imposed on the inverse of the covariance matrix. Banding
or tapering the sample covariance matrix was proposed in [3].
A spiked covariance structure, which is closely related to the
problem of component analysis and subspace estimation, was
introduced in [9]. Other structures such as group symmetry and
the Kronecker structure were considered in [10]–[12].

While the previously mentioned works have shown that en-
forcing a prior structure on the covariance estimator improves
its performance in many applications, most of them either as-
sume that the samples follow a Gaussian distribution or attempt
to regularize the sample covariance matrix. It has been realized
that the sample covariance matrix, which turns out to be the
maximum likelihood estimator of the covariance matrix when
the samples are assumed to be independent identically normally
distributed, performs poorly in many real-world applications.
A major factor that causes the problem is that the distribution
of a real-world data set is often heavy-tailed or contains out-
liers. In this case, a single erroneous observation can lead to a
completely unreliable estimate [13].

A way to address the aforementioned problem is to find a ro-
bust structured covariance matrix estimator that performs well
even if the underlying distribution deviates from the Gaussian
assumption. One approach is to refer to the minimax principle
and seek the “best” estimate of the covariance for the worst
case noise. To be precise, the underlying probability distribu-
tion of the samples f(·) is assumed to belong to an uncertainty
set of functions F that contains the Gaussian distribution, and
the desired minimax robust estimator is the one whose max-
imum asymptotic variance over the set F is less than that of
any other estimator. Two types of uncertainty sets F , namely
the ε-contamination and the Kolmogorov class, were considered
in [14], where a structured maximum likelihood type estimate
(M-estimate) was derived as the solution of a constrained op-
timization problem. For the elliptically symmetric distributions
that we are interested in this paper, it was proved in [15] that
given a number of N K-dimensional independent and identi-
cally distributed (i.i.d.) samples, the Tyler’s estimator defined
as the solution to the fixed-point equation

R =
K

N

N∑

i=1

xixT
i

xT
i R−1xi

, (1)

is a minimax robust estimator. Additionally, it is “distribution-
free” in the sense that its distribution does not depend on the
parametric form of the underlying distribution. The estimator
has been extended to the complex field in the works [16]–[19].

The problem of obtaining a structured Tyler’s estimator was
investigated in the recent works [20] and [21]. In particular, the
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authors of [20] focused on the group symmetry structure and
proved that it is a geodesically convex set. As the Tyler’s es-
timator can be defined alternatively as the minimizer of a cost
function that is also geodesically convex, it is concluded that
any local minimum of the cost function on a group symme-
try constraint set is a global minimum. A numerical algorithm
was also proposed to solve the constrained minimization prob-
lem. In [21], a convex structural constraint set was studied and
a generalized method of moments type covariance estimator,
COCA, was proposed. A numerical algorithm was also provided
based on semidefinite relaxation. It was proved that COCA is
an asymptotically consistent estimator. However, the algorithm
suffers from the drawback that the computational cost increases
as either N or K grows.

In this paper, we formulate the structured covariance esti-
mation problem as the minimization of Tyler’s cost function
under the structural constraint. Our work generalizes [20] by
considering a much larger family of structures, which includes
the group symmetry structure. Instead of attempting to obtain a
global optimal solution, which is a challenging task due to the
non-convexity of the objective function, we focus on devising
algorithms that converge to a stationary point of the problem.
We first work out an algorithm framework for the general convex
structural constraint based on the majorization-minimization
(MM) framework, where a sequence of convex programming
is required to be solved. Then we consider several special cases
that appear frequently in practical applications. By exploiting
specific problem structures, the algorithm is particularized, sig-
nificantly reducing the computational load. We further discuss
in the end two types of widely studied non-convex structures that
turn out to be computationally tractable under the MM frame-
work; one of them being the Kronecker structure and the other
one being the spiked covariance structure. Under the assumption
that the objective function goes to infinity whenever the variable
tends to a singular limit, which is guaranteed when the popu-
lation distribution is continuous and the number of samples N
is larger than their dimension K, the sequence generated by the
algorithm converges to a stationary point. It is worth mention-
ing that the Tyler’s cost function was shown to be geodesically
convex in [22], therefore the iterates generated by the algorithm
converge to a global minimum when the constraint set is also
geodesically convex [20], [23].

The paper is organized as follows. In Section II, we formulate
the robust covariance estimation problem and introduce the MM
algorithm framework. In Section III, we derive a majorization-
minimization based algorithm framework for the general convex
structure. Several special cases are considered in Section IV,
where the algorithm is particularized obtaining higher efficiency
by considering the specific form of the structure. Section V
discusses the Kronecker structure and the spiked covariance
structure, which are non-convex but algorithmically tractable.
Numerical results are presented in Section VI and we conclude
in Section VII.

Notation: Italic letters denote scalars, lower case boldface
letters denote vectors, and upper case boldface letters denote
matrices. R and C denote the real field and the complex field,
respectively.

(
Rn

+ ,Rn
++

)
Rn denotes the set of (non-negative,

positive) real vectors of dimension n. Cm×n denotes complex-
valued matrices of size m × n. SK

+
(
SK

++
)

denotes the set of
symmetric (real field) and Hermitian (complex field) positive
semidefinite (definite) matrices of size K × K. The superscripts
(·)∗, (·)T , (·)H , (·)−1 denote complex conjugate, transpose, con-
jugate transpose and matrix inversion, respectively. Tr(·) and
det(·) denote the trace and determinant of a matrix. vec (X) de-
note a vector constructed by stacking the columns of X. diag (x)
denotes a diagonal matrix with x being its principal diagonal.
A � (�)B means A − B is positive semidefinite (definite).
‖ · ‖p denote the �p -norm. ‖ · ‖F denotes the Frobenius norm.
E(·),Var(·), and Cov(·) stand for expectation, variance, and
covariance, respectively.

II. TYLER’S ESTIMATOR WITH STRUCTURAL CONSTRAINT

Consider a number of N samples {x1 , . . . ,xN } inCK drawn
independently from a complex elliptically symmetric (CES) dis-
tribution with probability density function (pdf) as follows:

f (x) = cdet (R0)
−1ψ

(
(x − μ0)

H R−1
0 (x − μ0)

)
, (2)

where R0 ∈ SK
++ is the scatter parameter, μ0 ∈ CK is the lo-

cation parameter, ψ(·) is the density generator, and c > 0 is a
normalizing constant. It can be proved that if the mean E (x) ex-
ists, then it is equal to μ0 ; and if the covariance matrix E

(
xxH

)

exists, then it is proportional to R0 [24]. In the rests of this pa-
per, we assume μ0 is known and equal to the zero vector without
loss of generality, which is a common assumption in the signal
processing literature [25]. In practice, μ0 can be substituted in
prior by an estimate μ̂ if the zero mean assumption is violated.

Tyler’s estimator for R0 is defined as the solution of the
following fixed-point equation:

R =
K

N

N∑

i=1

xixH
i

xH
i R−1xi

, (3)

which can be interpreted as a weighted sum of rank one matrices
xixH

i with the weight decreasing as xi getting farther from the
center. It is known that if x is elliptically distributed, then the
normalized random variable s = x

‖x‖2
follows an angular central

Gaussian distribution with the pdf taking the form

f (s) ∝ det (R0)
−1(sH R−1

0 s
)−K

. (4)

Tyler’s estimator is the maximum likelihood estimator (MLE)
of R0 by fitting the normalized samples {si} to f (s). In other
words, the estimator R̂ is the minimizer of the following cost
function

L (R) = log det (R) +
K

N

N∑

i=1

log
(
xH

i R−1xi

)
(5)

on the positive definite cone SK
++ .1 The estimator with a

normalized trace is proved to be consistent and asymptoti-
cally normal with the variance independent of ψ(·) [4]. It
can be verified that L (R) is scale invariant, in the sense that

1The cost function (5) also applies to real-valued xi ’s.
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L (R) = L (rR) , ∀r > 0. Consequently, Tyler’s estimator R̂
estimates R0 up to a positive scaling factor. We focus on appli-
cations such as the direction-of-arrival (DOA) finding problem
and minimum variance portfolio problem, where obtaining an
estimator of the covariance matrix up to a scaling factor is suf-
ficient. The problem of estimating the scaling factor is beyond
the scope of this paper.

It has been noticed that in some applications, the covariance
matrix possesses a certain structure and taking account this in-
formation into the estimation yields a better estimate of R0
[10]–[12], [14]. Motivated by this idea, we consider the prob-
lem of including prior structure information into the Tyler’s
estimator to improve its estimation accuracy. To formulate the
problem, we assume that R0 is constrained in a non-empty set
S that is the intersection of a closed set, which characterizes
the covariance structure, and the positive semidefinite cone SK

+ ,
and then proceed to solve the optimization problem:

minimize
R

log det (R) +
K

N

N∑

i=1

log
(
xH

i R−1xi

)

subject to R ∈ S. (6)

The minimizer R̂ of the above problem is the one in the structural
set S that maximizes the likelihood of the normalized samples
{si}.

Throughout the paper, we make the following assumption.
Assumption 1: The cost function L (Rt) → +∞ when the

sequence {Rt} tends to a singular limit point of the constraint
set S.

Under this assumption, the case that R is singular can be
excluded in the analysis of the algorithms hereafter.

Note that the assumption
Assumption 2: f (x) is a continuous probability distribution,

and N > K, implies L (Rt) → +∞ whenever Rt tends to the
boundary of the positive semidefinite cone SK

+ with probabil-
ity one [4]. It is therefore also a sufficient condition for the
assumption to be held as S ⊆ SK

+ .
Problem (6) is difficult to solve for two reasons. First, the

constraint set S is too general to tackle. Second, even if S pos-
sesses a nice property such as convexity, the objective function is
still non-convex. Instead of trying to find the global minimizer,
which appears to be too ambitious for the reasons pointed out
above, we aim at devising efficient algorithms that are capable
of finding a stationary point of (6). We rely on the MM frame-
work to derive the algorithms, which is briefly stated next for
completeness.

A. The Majorization-Minimization Algorithm

For a general optimization problem

minimize
x

h (x)

subject to x ∈ X , (7)

where X is a closed convex set, the MM algorithm finds a
stationary point of (7) by successively solving a sequence of
simpler optimization problems. The iterative algorithm starts at

some arbitrary feasible initial point x0 , and at the (t + 1)-th
iteration the update of x is given by

xt+1 = arg min
x∈X

g (x|xt) , (8)

with the surrogate function g (x|xt) satisfying the following
assumptions:

h (xt) = g (xt |xt) , ∀xt ∈ X
h (x) ≤ g (x|xt) , ∀x,xt ∈ X

h′ (xt ;d) = g′ (xt ;d|xt) , ∀xt + d ∈ X , (9)

where h′ (x;d) stands for the directional derivative of h(·) at x
along the direction d, and g (x|xt) is continuous in both x and
xt .

It is proved in [26] that any limit point of the sequence
{xt} generated by the MM algorithm is a stationary point of
problem (7). If it is further assumed that the initial level set
{x|h (x) ≤ h (x0)} is compact, then a stronger statement, as
follows, can be made:

lim
t→+∞

d (xt ,X �) = 0,

where X � stands for the set of all stationary points of (7), and
d (xt ,X �) is the distance between point xt and the set X � ,
defined as

d (xt ,X �) = inf
x∈X �

‖ xt − x ‖2 . (10)

The idea of majorizing h (x) by a surrogate function can
also be applied blockwise. Specifically, x is partitioned into
m blocks as x =

(
x(1) , . . . ,x(m )

)
, where each ni-dimensional

block x(i) ∈ Xi and X =
∏m

i=1 Xi .
At the (t + 1)-th iteration, x(i) is updated by solving the

following problem:

minimize
x( i )

gi

(
x(i) |xt

)

subject to x(i) ∈ Xi (11)

with i = (t mod m) + 1 and the continuous surrogate function
gi

(
x(i) |xt

)
satisfying the following properties:

h (xt) = gi

(
x(i)

t |xt

)
,

h
(
x(1)

t , . . . ,x(i) , . . . ,x(m )
t

)
≤ gi

(
x(i) |xt

)
∀x(i) ∈ Xi ,

h′ (xt ;d0
i

)
= g′i

(
x(i)

t ;di |xt

)

∀x(i)
t + di ∈ Xi ,

d0
i � (0; . . . ;di ; . . . ;0) .

In short, at each iteration, the block MM applies the ordinary
MM algorithm to one block while keeping the value of the other
blocks fixed. The blocks are updated in cyclic order.

In the rest of this paper, we are going to derive the specific
form of the surrogate function g (R|Rt) based on a detailed
characterization of various kinds of S. In addition, we are going
to show how the algorithm can be particularized at a lower



SUN et al.: ROBUST ESTIMATION OF STRUCTURED COVARIANCE MATRIX FOR HEAVY-TAILED ELLIPTICAL DISTRIBUTIONS 3579

computational cost with a finer structure of S available. Before
moving to the algorithmic part, we first compare our formulation
with several related works in the literature.

B. Related Works

In [14], the authors derived a minimax robust covariance es-
timator assuming that f (x) is a corrupted Gaussian distribution
with noise that belongs to the ε-contamination class and the
Kolmogorov class. The estimator is defined as the solution of a
constrained optimization problem similar to (6), but with a dif-
ferent cost function. Apart from the distinction that the family
of distributions we consider is the set of elliptical distributions,
the focus of our work, which completely differs from [14], is on
developing efficient numerical algorithms for different types of
structural constraint set S.

Two other closely related works are [20] and [21]. In [20],
the authors have investigated a special case of (6), where S is
the set of all positive semidefinite matrices with group symme-
try structure. It has been shown that both L (R) and the group
symmetry constraint are geodesically convex, therefore any lo-
cal minimizer of (6) is global. Several examples, including the
circulant and persymmetry structure, have been proven to be a
special case of the group symmetry constraint. A numerical al-
gorithm has also been provided that decreases the cost function
monotonically. Our work includes the group symmetry structure
as a special case since the constraint is linear, and provides an
alternative algorithm to solve the problem.

In [21], the authors have considered imposing convex con-
straint on Tyler’s estimator. A generalized method of moment
type estimator based on semidefinite relaxation defined as the
solution of the following problem:

minimize
R∈S,di

∥∥∥∥∥R − 1
N

N∑

i=1

dixixH
i

∥∥∥∥∥

subject to R � 1
K

dixixH
i , ∀i = 1, . . . , N,

di > 0, ∀i = 1, . . . , N, (12)

was proposed and proved to be asymptotically consistent. Nev-
ertheless, the number of constraints grows linearly in N and as
it was pointed out in the paper, the algorithm becomes compu-
tationally demanding either when the problem dimension K or
the number of samples N is large. On the contrary, our algo-
rithm based on formulation (6) is less affected by the number of
samples N and is therefore more computationally tractable.

III. TYLER’S ESTIMATOR WITH CONVEX

STRUCTURAL CONSTRAINT

In this section, we are going to derive a general algorithm
for problem (6) with S being a closed convex subset of SK

+ ,
which enjoys a wide range of applications. For instance, the
Toeplitz structure can be imposed on the covariance matrix of
the received signal in DOA problems. Banding is also considered
as a way of regularizing a covariance matrix whose entries decay
fast as they get far away from the main diagonal.

Algorithm 1: Robust covariance estimation under convex
structure.

1: Set t = 0, initialize Rt to be any positive definite
matrix.

2: repeat
3: Compute Mt = K

N

∑N
i=1

x i xH
i

xH
i R−1

t x i
.

4: Update Rt+1 as

R̃t+1 = arg min
R∈S

Tr
(
R−1

t R
)

+ Tr
(
MtR−1) (18)

Rt+1 = R̃t+1/Tr
(
R̃t+1

)
. (19)

5: t ← t + 1.
6: until Some convergence criterion is met

Since S is closed and convex, constructing a convex surrogate
function g (R|Rt) for L (R) turns out to be a natural idea since
then Rt+1 can be found via

Rt+1 = arg min
R∈S

g (R|Rt) , (13)

which is a convex problem.
Proposition 1: At any Rt � 0, the objective function L (R)

can be upperbounded by the convex surrogate function

g (R|Rt) = Tr
(
R−1

t R
)

+
K

N

N∑

i=1

xH
i R−1xi

xH
i R−1

t xi

+ const. (14)

with equality achieved at Rt . �
Proof: Since log det(·) is concave, log det (R) can be up-

perbounded by its first order Taylor expansion at Rt :

log det (R) ≤ log det (Rt) + Tr
(
R−1

t R
)
− K (15)

with equality achieved at Rt .
Also, by the concavity of the log(·) function we have

log (x) ≤ log a +
x

a
− 1, ∀a > 0, (16)

which leads to the bound

log
(
xH

i R−1xi

)
≤ xH

i R−1xi

xH
i R−1

t xi

+ log
(
xH

i R−1
t xi

)
− 1

with equality achieved at R = Rt . �
The variable R then can be updated as (13) with a surrogate

function (14).
By the convergence result of the MM algorithm, it can be

concluded that every limit point of the sequence {Rt} is a
stationary point of problem (6). Note that for all of the structural
constraints that we are going to consider in this work, the set S
possesses the property that

R ∈ S iff rR ∈ S, ∀r ≥ 0. (17)

In other words, S is a cone. Since the cost function L (R) is
scale-invariant in the sense that L (R) = L (rR), we can add a
trace normalization step after the update of Rt without affecting
the value of the objective function. The algorithm for a general
convex structural set is summarized in Algorithm 1.
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Proposition 2: If the set S satisfies (17), then the sequence
{Rt} generated by Algorithm 1 satisfies

lim
t→∞

d (Rt ,S�) = 0, (20)

where S� is the set of stationary points of problem (6).
Proof: Since the objective function L (R) is scale-invariant,

and the constraint set satisfies (17), solving (6) is equivalent to
solving

minimize
R∈S

log det (R) +
K

N

N∑

i=1

log
(
xH

i R−1xi

)

subject to Tr (R) = 1.

The conclusion follows by a similar argument to Proposition 17
in [27]. �

A. General Linear Structure

In this subsection we further assume that the set S is the
intersection of SK

+ and an affine set A. The following lemma
shows that in this case, the update of R (Eq. (18)) can be recast
as a semidefinite programming (SDP).

Lemma 3: Problem (18) is equivalent to

minimize
S,R∈S

Tr
(
R−1

t R
)

+ Tr (MtS)

subject to

[
S I

I R

]
� 0, (21)

in the sense that if (S� ,R�) solves (21), then R� solves (18).
Proof: Problem (18) can be written equivalently as

minimize
S,R∈S

Tr
(
R−1

t R
)

+ Tr (MtS)

subject to S = R−1 .

Now we relax the constraint S = R−1 as S � R−1 . By the
Schur complement lemma for a positive semidefinite matrix, if
R � 0, then S � R−1 is equivalent to

[
S I

I R

]
� 0.

Therefore (21) is a convex relaxation of (18).
The relaxation is tight since Tr (MtS) ≥ Tr

(
MtR−1

)
if

Mt � 0 and S � R−1 . �
Lemma 3 reveals that for linear structural constraint, Algo-

rithm 1 can be particularized as solving a sequence of SDPs.
An application is the case that R can be parametrized as

R =
L∑

j=1

ajBj (22)

with aj ∈ C being the variable and Bj ∈ CK×K being the cor-
responding given basis matrix, and R is constrained to be in
SK

+ . Using expression (22), the minimization problem (21) can

be simplified as

minimize
S,{aj }

L∑

j=1

ajTr
(
R−1

t Bj

)
+ Tr (MtS)

subject to

[
S I

I
∑L

j=1 ajBj

]
� 0. (23)

IV. TYLER’S ESTIMATOR WITH SPECIAL CONVEX STRUCTURES

Having introduced the general algorithm framework for a
convex structure in the previous section, we are going to dis-
cuss in detail some convex structures that arise frequently in
signal processing related fields, and show that by exploiting the
problem structure the algorithm can be particularized with a
significant reduction in the computational load.

A. Sum of Rank-One Matrices Structure

The structure set S that we study in this part is

S =

⎧
⎨

⎩R|R =
L∑

j=1

pjajaH
j , pj ≥ 0

⎫
⎬

⎭ , (24)

where the aj ’s are known vectors in CK . The matrix R can be
interpreted as a weighted sum of given matrices ajaH

j .
As an example application where structure (24) appears, con-

sider the following signal model

x = Aβ + ε, (25)

where A = [a1 , . . . ,aL ] is some given matrix. Assuming that
the signal β and noise ε are zero-mean random variables and
any two elements of them are uncorrelated, then the covariance
matrix of x takes the form

Cov (x) =
L∑

j=1

pjajaH
j + Σ, (26)

where pj = Var (βj ) is the signal variance and Σ =
diag (σ1 , . . . , σK ) is the noise covariance matrix.

Define p = [p1 , . . . pL ]H and P = diag (p), then R can be
written compactly as R = APAH + Σ. Further define

P̃ = diag (p1 , . . . , pL , σ1 , . . . , σK )

Ã = [A, I] (27)

then R = ÃP̃ÃH . Therefore, without loss of generality, we
can focus on the expression R = APAH , assuming that every
K columns of A are linearly independent and L > K.

Recall that the problem to be solved takes the form

minimize
R ,P�0

log det (R) +
K

N

N∑

i=1

log
(
xH

i R−1xi

)

subject to R = APAH . (28)

Since R is linear in the pj ’s, Algorithm 1 can be applied. In the
following, we are going to provide a more efficient algorithm
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by substituting R = APAH into the objective function L (R)
and applying the MM procedure with P being the variable.

Proposition 4: At any Pt � 0, the objective function

L (P) = log det
(
APAH

)
+

K

N

N∑

i=1

log
(
xH

i

(
APAH

)−1
xi

)

(29)
can be upperbounded by the surrogate function

g (P|Pt) = wH
t p + dH

t p−1 + const. (30)

with equality achieved at P = Pt , where p−1 stands for the
element-wise inverse of p, and

Rt = APtAH

Mt =
K

N

N∑

i=1

xixH
i

xT
i R−1

t xi

wt = diag
(
AH R−1

t A
)

dt = diag
(
PtAH R−1

t MtR−1
t APt

)
. (31)

Proof: First, observe that inequalities (15) and (16) imply
that

L (P) ≤ wH
t p + Tr

(
MtR−1) + const. (32)

with equality achieved at P = Pt .
Assume that P � 0, from the identity

S =

[
R−1

t APtP−1PtAH R−1
t I

I APAH

]

=

[
R−1

t APtP−1/2

AP1/2

]
[
P−1/2PtAH R−1

t P1/2AH
]
,

we know that S � 0. By the Schur complement, S � 0 is equiv-
alent to

R−1
t APtP−1PtAH R−1

t �
(
APAH

)−1
. (33)

Since Mt � 0, we have

Tr
(
MtR−1) ≤ Tr

(
MtR−1

t APtP−1PtAH R−1
t

)
(34)

with equality achieved at P = Pt .
Since R � 0, the left hand side of (34) is finite. Therefore

(34) is also valid for P � 0. Substituting (34) into (32) yields
the surrogate function (30). �

Note that both wt and dt are real-valued, the update of P
then can be found in closed-form as

(pj )t+1 =
√

(dj )t/(wj )t . (35)

The algorithm is summarized in Algorithm 2.
Compared to Algorithm 1, in which the minimization prob-

lem (13) has no closed-form solution and typically requires an
iterative algorithm, the new algorithm only requires a single
loop iteration in p and is expected to converge faster.

Algorithm 2: Robust covariance estimation under sum of
rank-one matrices structure.

1: Set t = 0, initialize pt to be any positive vector.
2: repeat

3: R̃t = APtAH ,Rt = R̃t/Tr
(
R̃t

)
.

4: Compute Mt ,wt ,dt with (31)
5: (pj )t+1 =

√
(dj )t/(wj )t

6: t ← t + 1.
7: until some convergence criterion is met

B. Toeplitz Structure

Consider the constraint set being the class of real-valued pos-
itive semidefinite Toeplitz matrices TK . If R ∈ TK , then it can
be determined by its first row [r0 , . . . , rK−1 ].2

In this subsection, we are going to show that based on the
technique of circulant embedding, Algorithm 2 can be adopted
to solve the Toeplitz structure constrained problem at a lower
cost than applying the sequential SDP algorithm (Algorithm 1).

The idea of embedding a Toeplitz matrix as the upper-left part
of a larger circulant matrix has been discussed in [5], [7], [28].
It was proved in [6] that any positive definite Toeplitz matrix R
of size K × K can be embedded in a positive definite circulant
matrix C of larger size L × L parametrized by its first row of
the form

[r0 , r1 , . . . , rK−1 , ∗, . . . , ∗, rK−1 , . . . , r1 ] ,

where ∗ denotes some real number. R then can be written as

R =
[
IK 0

]
C

[
IK 0

]T
. (36)

Clearly, for any fixed L, if C is symmetric positive semidefinite,
so is R. However, the statement is false the other way around.
In other words, the set

TL
K �

{
R|R =

[
IK 0

]
C

[
IK 0

]T
,C ∈ CL

}
, (37)

where CL denotes the set of real-valued positive semidefinite
circulant matrices of size L × L, is a subset of TK .

Instead of TK , we restrict the feasible set to be TL
K with

L ≥ 2K − 1. Since a circulant matrix can be diagonalized by
the Fourier matrix, if R ∈ TL

K then it can be written as

R = A diag (p0 , . . . , pL−1)AH , (38)

where

A =
[
IK 0

]
FL , (39)

with FL being the normalized Fourier transform matrix of size
L × L and pj = pL−j , ∀j = 1, . . . , L − 1.3

2Following the convention, the indices for the Toeplitz structure start from 0.
3The algorithm is developed for estimating a real-valued Toeplitz matrix, it

can be adapted to estimating a complex-valued one by removing the constraint
pj = pL−j .
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Algorithm 3: Robust covariance estimation under the real-
valued Toeplitz structure (Circulant Embedding).

1: Set L to be an integer such that L ≥ 2K − 1.
2: Construct matrix A =

[
IK 0

]
FL

3: Call Algorithm 2 (pt is initialized satisfying
pj = pL−j , ∀j = 1, . . . , L − 1).

The robust covariance estimation problem over the restricted
set of Toeplitz matrices TL

K then takes the form

minimize
R ,P�0

log det (R) +
K

N

N∑

i=1

log
(
xH

i R−1xi

)

subject to R = APAH

pj = pL−j , ∀j = 1, . . . , L − 1, (40)

which is the same as (28) except that the last equality constraint
on the pj ’s.

By Proposition 4, the inner minimization problem takes the
form

minimize
p≥0

wT
t p + dT

t p−1

subject to pj = pL−j , ∀j = 1, . . . , L − 1. (41)

Note that by the property of the Fourier transform matrix, we
haveaj = aL−j , ∀j = 1, . . . , L − 1, where the upper bar stands
for element-wise complex conjugate. As a result, if (pj )t =
(pL−j )t , for j = 1, . . . , L − 1, then

(wj )t = (wL−j )t

(dj )t = (dL−j )t , (42)

which implies that the constraint pj = pL−j will be satisfied
automatically.

The algorithm for the Toeplitz structure based on circulant
embedding is summarized in Algorithm 3. Notice that Algo-
rithm 3 can be generalized easily to noisy observations by the
augmented representation (27).

C. Banded Toeplitz Structure

In addition to imposing the Toeplitz structure on a real-valued
covariance matrix, in some applications we can further require
that the Toeplitz matrix is k-banded, i.e., rj = 0 if j > k. For
example, the covariance matrix of a stationary moving average
process of order k satisfies the above assumption. One may also
consider banding the covariance matrix if it is known in prior
that the correlation of xt and xt−τ decreases as τ increases.

Based on the circulant embedding technique introduced in
the last subsection, the problem can be formulated as

minimize
R ,P�0

log det (R) +
K

N

N∑

i=1

log
(
xH

i R−1xi

)

subject to R = APAH

pj = pL−j , ∀j = 1, . . . , L − 1

rj = 0, ∀j = k + 1, . . . , K − 1. (43)

By Proposition 4, the inner minimization problem becomes

minimize
p≥0

wT
t p + dT

t p−1

subject to pj = pL−j , ∀j = 1, . . . , L − 1

rj = 0, ∀j = k + 1, . . . ,K − 1, (44)

which can be rewritten compactly as

minimize
p≥0

wT
t p + dT

t p−1

subject to
[
0(K−k−1)×k+1 IK−k−1

]
Ap = 0

pj = pL−j , ∀j = 1, . . . , L − 1. (45)

Recall that aj = aL−j , ∀j = 1, . . . , L − 1. For simplicity we
assume that L is odd. The constraint pj = pL−j implies that
pjaj + pL−jaL−j = 2pjRe {aj}. Define real-valued quantities

Ã = Re
{[

a0 , 2a1 , . . . , 2a L −1
2

]}
(46)

w̃ =
[
w0 , 2w1 , . . . , 2wL −1

2

]
(47)

d̃ =
[
d0 , 2d1 , . . . , 2dL −1

2

]
, (48)

we have the equivalent problem

minimize
p̃≥0

w̃T
t p̃ +

L −1
2∑

j=0

d̃j /p̃j

subject to Ãp̃ = 0, (49)

where the variables p̃ and p are related by

p̃ =
[
p0 , p1 , . . . , p L −1

2

]
. (50)

Compared to (45), the equivalent problem has a lower compu-
tational cost as both the number of variables and constraints are
reduced. Using the epigraph form, problem (49) can be cast as
the following second-order-cone programming (SOCP)

minimize
p̃,t

w̃T
t p̃ +

L −1
2∑

j=0

dj tj

subject to Ãp̃ = 0,
∥∥∥∥

[
2

p̃j − tj

]∥∥∥∥ ≤ p̃j + tj , ∀j. (51)

The algorithm for the banded Toeplitz structure is summa-
rized in Algorithm 4.
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Algorithm 4: Robust covariance estimation under the real-
valued Banded Toeplitz structure (Circulant Embedding).

1: Set L to be an integer such that L ≥ 2K − 1.
2: Construct matrix A =

[
IK 0

]
FL and Ã with (46).

3: Set t = 0, initialize pt to be any positive vector.
4: repeat

5: R̃t = APtAH ,Rt = R̃t/Tr
(
R̃t

)
.

6: Compute Mt ,wt ,dt with (31).
7: Compute w̃ and d̃ with (47) and (48), and update p̃ as

the minimizer of (51).
8: Compute p with (50), pt ← p
9: t ← t + 1

10: until some convergence criterion is met

D. Convergence Analysis

We consider Algorithm 2, and the argument for Algorithms 3,
and 4 would be similar.

As Proposition 4 is established under the condition Pt � 0,
the general convergence result of the MM algorithm cannot be
applied here since the surrogate function g (P|Pt) is required
to upperbound L (P) ,∀P,Pt � 0. Therefore, we consider the
following ε-approximation of problem (28):

minimize
R ,p≥0

log det
(
R + εAAH

)
}

+
K

N

N∑

i=1

log
(
xH

i

(
R + εAAH

)−1
xi

)

subject to R = APAH (52)

with ε > 0, where the upperbound derived in Proposition 4 now
can be applied to P̃ � P + εI � 0. Algorithm 2 can be easily
modified to solve problem (52), and under Assumption 1, the
limit point of the sequence {pε

t} generated by Algorithm 2
converges to the set of stationary points of (52).

That is, if (pε)� is a limit point of {pε
t}, then

∇Lε((pε)�)T d ≥ 0 (53)

for any feasible direction d, where ∇Lε ((pε)�) is the gradient
of the objective function Lε (p) at (pε)� .

Proposition 5: Under Assumption 1, let εk be a positive se-
quence with limk→+∞ εk = 0, then any limit point p� of the
sequence {(pεk )�} is a stationary point of problem (28).

Proof: The conclusion follows from the continuity of
∇Lε ((pε)�) in (pε)� and ε under Assumption 2. �

In practice, as ε can be chosen as an arbitrarily small number,
directly applying Algorithms 2, 3 and 4 or adapting them to
solving the ε-approximation problem would be virtually the
same.

V. TYLER’S ESTIMATOR WITH NON-CONVEX STRUCTURE

In the previous sections we have proposed algorithms for
Tyler’s estimator with a general convex structural constraint
and discussed in detail some special cases. For the non-convex

structure, the problem is more difficult to handle. In this section,
we are going to introduce two popular non-convex structures that
are tractable by applying the MM algorithm, namely the spiked
covariance structure and the Kronecker structure.

A. The Spiked Covariance Structure

The term “spiked covariance” was introduced in [29] and
refers to the covariance matrix model

R =
L∑

j=1

pjajaH
j + σ2I, (54)

where L is some integer that is less than K, and the aj ’s are
unknown orthonormal basis vectors. Note that although (54)
and (26) share similar form, they differ from each other essen-
tially since the aj ’s in (26) are known and are not necessarily
orthogonal. The model is directly related to principle compo-
nent analysis, subspace estimation, and also plays an important
role in sensor array applications [4], [9]. This model, referred
to as factor model, is also very popular in financial time series
analysis [30].

The constrained optimization problem is formulated as

minimize
R ,aj ,p≥0,σ

log det (R) +
K

N

N∑

i=1

log
(
xH

i R−1xi

)

subject to R =
L∑

j=1

pjajaH
j + σ2I,

AH A = I, (55)

where A = [a1 , . . . ,aL ].
Applying the upperbound (16) for the second term in the ob-

jective function yields the following inner minimization prob-
lem:

minimize
R ,aj ,p≥0,σ

log det (R) +
K

N

N∑

i=1

xH
i R−1xi

xH
i R−1

t xi

subject to R =
L∑

j=1

pjajaH
j + σ2I,

AH A = I. (56)

Although the problem is non-convex, a global minimizer can be
found in closed-form as

(σ�)2 =
1

K − L

K∑

j=L+1

λj

p�
j = λj − (σ�)2

a�
j = uj , (57)

where λ1 ≥ · · · ≥ λK are the sorted eigenvalues of matrix
K
N

∑N
i=1

x i xH
i

xH
i R−1

t x i
and the uj ’s are the associated eigenvec-

tors [31]. The algorithm for the spiked covariance structure is
summarized in Algorithm 5.
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Algorithm 5: Robust covariance estimation under the spiked
covariance structure.

1: Initialize R0 to be an arbitrary feasible positive definite
matrix.

2: repeat
3: Mt = K

N

∑N
i=1

x i xH
i

xH
i R−1

t x i
.

4: Eigendecompose Mt as Mt =
∑K

j=1 λjujuH
j , where

λ1 ≥ · · · ≥ λK .
5: Compute σ�, p�

j ,a
�
j with (57)

6: R̃t+1 =
∑L

j=1 p�
j a

�
j

(
a�

j

)H + (σ�)2I.

7: Rt+1 = R̃t+1/Tr
(
R̃t+1

)
.

8: t ← t + 1.
9: until Some convergence criterion is met.

As the feasible set is not convex, the convergence statement
of the MM algorithm in [26] needs to be modified as follows.

Proposition 6: Any limit point R� generated by the algo-
rithm satisfies

Tr
(
∇L(R�)H R

)
≥ 0, ∀R ∈ TS (R�) ,

where TS (R�) stands for the tangent cone of S at R� .
Proof: The result follows by combining the standard con-

vergence proof of the MM algorithm [26] and the necessity
condition of R� being the global minimal of g (R|R�) over an
arbitrary set S (see Proposition 4.7.1 in [32]):

Tr
(
∇g(R� |R�)H R

)
≥ 0, ∀R ∈ TS (R�) . �

B. The Kronecker Structure

In this subsection we consider the covariance matrix that can
be expressed as the Kronecker product of two matrices, i.e.,

R = A ⊗ B, (58)

where A ∈ Sp
+ and B ∈ Sq

+ .
Substituting R = A ⊗ B into the objective function yields

the equivalent problem:

minimize
A�0,B�0

pq

N

N∑

i=1

log Tr
(
A−1MH

i B−1Mi

)

+ qlog det (A) + plog det (B) (59)

where Mi ∈ Cq×p and vec (Mi) = xi . Denote the objective
function of (59) as L (A,B).

Note that although the objective function of the equivalent
problem is still non-convex, the constraint set of the equivalent
problem (59) becomes the Cartesian product of two convex sets,
which is convex.

1) Gauss-Seidel: Since L (R) is scale-invariant, we can
make the restriction that Tr (A) = 1 and Tr (B) = 1 and then
problem (59) can be solved by updating A and B alternately.

Algorithm 6: Robust covariance estimation under the Kro-
necker structure (Gauss-Seidel).

1: Initialize A0 and B0 to be arbitrary positive definite
matrices of size p × p and q × q, respectively.

2: repeat
3: Update A with (62).
4: Update B with (63).
5: t ← t + 1.
6: until Some convergence criterion is met.

Specifically, for fixed B = Bt , we need to solve the following
problem:

minimize
A�0

log det (A) +
p

N

N∑

i=1

log Tr
(
A−1MH

i B−1
t Mi

)

subject to Tr (A) = 1. (60)

Setting the gradient of the objective function to zero yields the
fixed-point equation

A =
p

N

N∑

i=1

MH
i B−1

t Mi

Tr
(
A−1MH

i B−1
t Mi

) . (61)

As objective function of (60) is essentially the same as the
Tyler’s cost function (5), an argument similar to Theorem 2.1 in
[15] reveals that the solution to (61) is unique up to a positive
scaling factor, and under Assumption 1, the iteration

Ã =
p

N

N∑

i=1

MH
i B−1

t Mi

Tr
(
A−1

r MH
i B−1

t Mi

)

Ar+1 = Ã/Tr
(
Ã

)
(62)

converges to the unique global minimum of (60) as r → +∞.
Assign At+1 = lim

r→+∞
Ar , similarly we have the fixed-point

iteration for B as

B̃ =
q

N

N∑

i=1

MiA−1
t+1M

H
i

Tr
(
A−1

t+1M
H
i B−1

r Mi

)

Br+1 = B̃/Tr
(
B̃

)
, (63)

and Bt+1 = limr→+∞ Br .
Proposition 7: Under Assumption 1, every limit point, de-

noted by (A� ,B�), of the sequence {(At ,Bt)} generated by
Algorithm 6 is a global minimizer of (59).

Proof: The convergence of block coordinate descent algo-
rithm states that the pair (A� ,B�) is a stationary point of
problem (59) (Proposition 2.7.1 in [33]). Moreover, it has been
proven that the Tyler’s cost function (5) is geodesically convex
on S++ [22]. Lemma 3 in [23] then implies that L (A ⊗ B) is
also geodesically convex. Finally, Corollary 3.1 in [34] implies
that the stationary point (A� ,B�) is a global minimum since
L (A ⊗ B) is continuously differentiable. �
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2) Block Majorization-Minimization: A stationary point of
L (A,B) can also be found by block majorization-minimization
algorithm (Block MM).

By Proposition 1, with the value of Bt fixed to be Bt , a
convex upperbound of L (A,B) on Sp

+ at point At (ignoring a
constant term and up to a scale factor of q) can be found as

g (A|At ,Bt)=Tr
(
A−1

t A
)

+
p

N

N∑

i=1

Tr
(
A−1MH

i B−1
t Mi

)

Tr
(
A−1

t MH
i B−1

t Mi

) .

(64)
Lemma 8: Under Assumption 1, for any At ,Bt � 0, the

matrix

M (At ,Bt) =
p

N

N∑

i=1

MH
i B−1

t Mi

Tr
(
A−1

t MH
i B−1

t Mi

)

is nonsingular.
Proof: At (At ,Bt) (ignoring a constant term and up to a

scale factor of q) the function L (A,Bt) can be upperbounded
by

g̃ (A|At ,Bt) = log det (A) + Tr
(
A−1M (At ,Bt)

)
. (65)

If M (At ,Bt) is singular, we can eigendecompose M (At ,Bt)
as M (At ,Bt) = Udiag (λ1 , . . . , λp)UH with λ1 = 0, and set
A−1 = Udiag (σ1 , . . . , σp)UH .

Letting σ1 → 0 would result in g̃ (A|At ,Bt) unbounded be-
low, which implies L (A,Bt) is also unbounded below and
contradicts Assumption 1. �

An immediate implication of Lemma 8 is that g (A|At ,Bt) is
strictly convex on Sp

++ and has a unique closed-form minimizer
given by

At+1 = A1/2
t

(
A−1/2

t MA−1/2
t

)1/2
A1/2

t , (66)

where

M =
p

N

N∑

i=1

MH
i B−1

t Mi

Tr
(
A−1

t MH
i B−1

t Mi

) .

Symmetrically, we have the update for B given by

Bt+1 = B1/2
t

(
B−1/2

t MB−1/2
t

)1/2
B1/2

t , (67)

where

M =
q

N

N∑

i=1

MiA−1
t+1M

H
i

Tr
(
A−1

t+1M
H
i B−1

t Mi

) .

Proposition 9: Under Assumption 1, every limit point, de-
noted by (A� ,B�), of the pair generated by Algorithm 7 is a
global minimizer of problem (59).

Proof: Theorem 2 (a) in [26] implies that (A� ,B�) is a
stationary point of problem (59). The rest of the proof is the
same as that of Proposition 7. �

Compared to Algorithm 6, which is a double loop algorithm,
Algorithm 7 only performs a single loop iteration. However, the
updates of Algorithm 6 are simpler to compute than those of
Algorithm 7.

Algorithm 7: Robust covariance estimation under the Kro-
necker structure (Block Majorization-Minimization).

1: Initialize A0 and B0 to be arbitrary positive definite
matrices of size p × p and q × q, respectively.

2: repeat
3: Update A with (66) or (68) if A ∈ A.
4: Update B with (67) or (69) if B ∈ B.
5: t ← t + 1.
6: until Some convergence criterion is met.

Note that with the surrogate function of the form (64), we can
easily impose additional convex structures on A and B, and the
update is found by solving the convex problem:

At+1 = arg min
A∈A

g (A|At ,Bt) , (68)

Bt+1= arg min
B∈B

g (B|At+1 ,Bt) , (69)

with A and B being the convex structural constraint sets.

VI. NUMERICAL RESULTS

In this section, we present numerical results that demonstrate
the effect of imposing structure on the covariance estimator
on reducing estimation error, and provide a comparison of the
proposed estimator with some state-of-the-art estimators. The
estimation error is evaluated by the normalized mean-square
error, namely

NMSE
(
R̂

)
=

E
∥∥∥R̂ − R0

∥∥∥
2

F

‖R0‖2
F

, (70)

where all of the matrices are normalized by their trace. The ex-
pected value is approximated by 100 Monte Carlo simulations.
In the following, we mainly compare the performance of four
estimators, namely, the SCM, unconstrained Tyler’s estimator
(fixed-point equation of (3)), COCA (solution to (12)), and the
proposed structure constrained Tyler’s estimator. The samples in
all of the simulations of this section, if not otherwise specified,
are i.i.d. following xi ∼

√
τu, where τ ∼ χ2

1 ,u ∼ N (0,R0),
and τ and u are independent. The dimension K is set to be 15.

All simulations were coded in MATLAB and performed
on a PC with a 3.20 GHz i5-3470 CPU and 8 GB RAM.
Convergence criteria for all derived algorithms was set to be
|L (Rt+1) − L (Rt)| /max (1, |L (Rt)|) ≤ 10−6 . For all algo-
rithms that involve a convex programming, namely, COCA (12),
Algorithm 1, and Algorithm 4, we used CVX [35], [36] with
solver MOSEK. In the following simulations, all of the algo-
rithms (except for COCA) shared the same initial point, which
was randomly generated each time the data set changed.

A. Toeplitz Structure

In this simulation, R0 is set to be a real-valued Toeplitz
matrix. The parameter R0 is set to be R (β), whose ij-th entry
is of the form

(R (β))ij = β|i−j |. (71)



3586 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 14, JULY 15, 2016

Fig. 1. Estimation error (NMSE) versus the number of samples N of different
estimators under the Toeplitz structure of the form (71).

Fig. 2. Average time (in seconds) consumed by COCA and the constrained
Tyler’s estimator via sequential SDP (Algorithm 1) and circulant embedding
(Algorithm 2) as the number of samples N varies from 20 to 200.

Fig. 1 shows the NMSE of the estimators with β = 0.8. The
result indicates that the structure constrained Tyler’s estimator
achieves the smallest estimation error. In addition, we see that
although the circulant embedding algorithm (Algorithm 2) with
L = 2 K − 1 approximately solves the Toeplitz structure con-
strained problem, it achieves virtually the same estimation error
as imposing the Toeplitz structure and solving the problem via
the sequential SDP algorithm (Algorithm 1). However, the com-
putational cost of circulant embedding is much lower than that
of sequential SDP and COCA, as shown in the average time cost
plotted in Fig. 2.

B. Banded Toeplitz Structure

Next we investigate the case that R0 is a k-banded Toeplitz
matrix Bk (R), where Bk (R) defines a matrix with the ij-th en-
try equals to that of R if |i − j| ≤ k, and equals zero otherwise.

Fig. 3. Estimation error (NMSE) versus the number of samples N of different
estimators under the banded Toeplitz structure.

Fig. 4. Average time (in seconds) consumed by COCA and constrained Tyler’s
estimator as the number of samples N varies from 20 to 200.

We set R = R (0.4) as defined in (71), and the bandwidth k
is chosen to be 3. The NMSE is plotted in Fig. 3, where the
constrained Tyler’s estimator achieves the smallest estimation
error. Fig. 4 plots the average time consumed by COCA and
the constrained Tyler’s estimator. As the number of semidefi-
nite constraints that COCA has is proportional to the number of
samples N , the time consumption is increasing in N , while the
time cost by the algorithm for the constrained Tyler’s estimator
remains roughly the same as N grows. When N is small, the
algorithm for COCA runs faster than ours since the scale of the
SDP that COCA solves is small. In the regime that N is large,
the computational cost of COCA increases, as reflected both in
the time and the memory required to run the algorithm.

In the third simulation, we consider R0 being a non-banded
Toeplitz matrix with the property that (R0)ij decays rapidly
as |i − j| increases. We investigate the cases of R0 = R (0.4)
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Fig. 5. NMSE of the Tyler’s estimator versus the number of samples N
under a banded Toeplitz structure of bandwidth k: (a) population parameter
R0 = R (0.4) (fast decay), (b) population parameter R0 = R (0.8) (slow
decay).

(fast decay) and R0 = R (0.8) (slow decay) and impose a
banded Toeplitz structure on the Tyler’s estimator with a varying
bandwidth k to regularize the estimator. Fig. 5 shows that the
smallest error is obtained when k = 3 in the β = 0.4 case, and
when k = 13 in the β = 0.8 case. In either case, with the right
choice of bandwidth k, the regularized estimator outperforms
the unbanded one when the number of samples is relatively
small compared to the dimension of the covariance matrix to be
estimated.

C. Direction of Arrival Estimation

In this subsection, we examine the robustness of the proposed
estimator in the context of the direction of arrival estimation
problem with the following signal model:

x (t) = A (θs) s (t) + n (t) ,

Fig. 6. Arrival angle estimated by MUSIC with different covariance
estimators.

where θs = [θ1 , . . . , θm ] is a vector with elements representing
the arriving directions of signal s (t),

A (θ) = [a (θ1) , . . . ,a (θm )] (72)

is the steering matrix, and n (t) is zero mean additive noise. We
study the simple case of an ideal uniform linear array (ULA)
with half-wavelength inter-element spacing, where

a (θ) =
[
1, e−jπ sin(θ) , . . . , e−jπ (K−1) sin(θ)

]T

. (73)

Assuming that the signal s (t) is a wide-sense stationary random
process with zero mean, the covariance of x (t) is

R = A (θs) Cov (s)A(θs)
H + Cov (n) .

Further assume that the signals arriving from different direc-
tions are uncorrelated and that the noise is spatially white, i.e.,
Cov (s) = diag (p1 , . . . , pm ) � Ps and Cov (n) = σ2I, the co-
variance model simplifies to be

R = A (θs)PsA(θs)
H + σ2I. (74)

In our simulation, m = 5 random signals are assumed arriving
from directions−10◦, 10◦, 15◦, 35◦, 40◦ with equal power p = 1
and the noise power is set to be σ2 = 0.1. The received signal
is assumed to be elliptically distributed and m is assumed to be
known. The number of sensors is K = 15.

We first estimate R and then apply the MUltiple SIgnal
Classification (MUSIC) algorithm to estimate the arriving an-
gles. The performance of SCM, Tyler’s estimator, COCA and
the constrained Tyler’s estimator are compared. For the lat-
ter two estimators, which require a specification of the struc-
ture set S =

{
R|R = APAH

}
parameterized by P � 0, we

construct the matrix A according to (72) and (73) with θ =[
−90

◦
,−85

◦
, . . . , 80

◦
, 85

◦]
. Fig. 6 shows the estimated arrival

direction using different estimators with the number of snap-
shots N = 20, and only the constrained Tyler’s estimator cor-
rectly recovers all of the arriving angles.
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Fig. 7. The estimation error of different estimators versus the number of
samples N under the DOA structure: (a) NMSE, (b) estimation error of the
noise subspace given by different estimators evaluated by (75).

Fig. 7 shows the performance of different estimators in terms
of NMSE and the estimation error of noise subspace evaluated
by

∥∥∥ÊcÊH
c − EcEH

c

∥∥∥
F
, (75)

with the number of snapshots N varying from 20 to 200,
where Ec denotes the noise subspace and Êc denotes its es-
timate. Êc is constructed by eigendecomposing R̂ as R̂ =∑K

j=1 λjujuH
j , λ1 ≥ · · · ≥ λK , and Êc =

∑K
j=m+1 λjujuH

j .
Fig. 7(a) reveals that the constrained Tyler’s estimator achieves
the smallest NMSE when N is small, while COCA performs
better when N is large. However, Fig. 7(b) indicates that the con-
strained Tyler’s estimator can estimate the noise subspace more
accurately for all values of investigated N , which is beneficial
for algorithms that are based on Êc such as MUSIC.

The average time cost by COCA and the constrained Tyler’s
estimator is plotted in Fig. 8. It can be seen that the proposed
method is much faster than COCA. In addition, unlike COCA,

Fig. 8. Average time (in seconds) consumed by COCA and constrained Tyler’s
estimator as the number of samples N varies from 20 to 200.

Fig. 9. The estimation error of different estimators versus the number of
samples N under the spiked covariance structure: (a) NMSE, (b) estimation
error of the noise subspace given by different estimators evaluated by (75).
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Fig. 10. Convergence comparison of Algorithm 6 and 7 under the Kronecker
structure (N = 4, A0 = I, p = 10, B0 = R (0.8) , q = 8).

the consumed time of our algorithm is not sensitive to the num-
ber of samples N .

D. Spiked Covariance Structure

We construct the true covariance R0 by the following model:

R0 =
L∑

j=1

pjajaH
j + σ2I,

where the aj ’s are randomly generated orthonormal basis and
the pj ’s are randomly generated corresponding eigenvectors uni-
formly distributed in [0.01, 1]. σ2 is set to be 0.01. The number
of spikes L = 10 is assumed to be known in prior. The matrix
dimension is fixed to be K = 100, and the number of samples is
varied from N = 105 to N = 150. As COCA applies only for
convex structural set and cannot be used here, we replace it by
the projected Tyler’s estimator, which is a two step procedure
that first obtains the Tyler’s estimator and then performs projec-
tion according to (57). Fig. 9 shows that imposing the spiked
structure helps in reducing the NMSE and subspace estimation
error measured by (75).

E. Kronecker Structure

The parameters are set to be A0 = I,B0 = R (0.8) , p =
10, q = 8, in the simulations. We first plot the convergence curve
of Algorithms 6 and 7 with the number of samples N = 4 in
Fig. 10. The two algorithms converges in roughly the same
number of iterations, however, the objective value corresponds
to Algorithm 7 (block MM) decreases more smoothly than Al-
gorithm 6 (Gauss-Seidel), as the latter is a double loop algorithm
while the former is a single loop algorithm.

Fig. 11 plots the NMSE of Tyler’s estimator with a Kronecker
constraint on R and that with both a Kronecker constraint on R
and a Toeplitz constraint on B. We can see that further imposing
a Toeplitz structure on B helps in reducing the estimation error.

Fig. 11. NMSE of Tyler’s estimator with a Kronecker structural constraint
compared to that with both a Kronecker and a Toeplitz structural constraint.

VII. CONCLUSION

In this paper, we have discussed the problem of robustly esti-
mating the covariance matrix with a prior structure information.
The problem has been formulated as minimizing the negative
log-likelihood function of the angular central Gaussian distri-
bution subject to the prior structural constraint. For the general
convex constraint, we have proposed a sequential convex pro-
gramming algorithm based on the majorization-minimization
framework. The algorithm has been particularized with higher
computational efficiency for several specific structures that are
widely considered in the signal processing community. The
spiked covariance model and the Kronecker structure, although
belonging to the non-convex constraint, are also discussed and
shown to be computationally tractable. The proposed estimator
has been shown outperform the state-of-the-art methods in the
numerical section.
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